Code Solutions

This section provides the solutions to all of the coding exercises provided in the text. The solutions are written in Python and use the NumPy library for numerical operations. The code snippets are self-contained and can be run in any Python environment. The solutions are organized by the exercise they correspond to and are presented in the same order as in the text. For convenience, the full code solution files resmet.py, neqdet.py and shcdet.py can be saved by clicking the links.

Restricted Electronic Structure Methods

#!/usr/bin/env python

import argparse as ap, itertools as it, numpy as np

np.set_printoptions(edgeitems=30, linewidth=100000, formatter=dict(float=lambda x: "%20.14f" % x))

ATOM = {
    "H" :  1,                                                             "He":  2,
    "Li":  3, "Be":  4, "B" :  5, "C" :  6, "N" :  7, "O" :  8, "F" :  9, "Ne": 10,
    "Na": 11, "Mg": 12, "Al": 13, "Si": 14, "P" : 15, "S" : 16, "Cl": 17, "Ar": 18,
    "K" : 19, "Ca": 20, "Ga": 31, "Ge": 32, "As": 33, "Se": 34, "Br": 35, "Kr": 36,
    "Rb": 37, "Sr": 38, "In": 49, "Sn": 50, "Sb": 51, "Te": 52, "I" : 53, "Xe": 54,
}

# SECTION FOR PARSING COMMAND LINE ARGUMENTS =====================================================================================

# create the parser
parser = ap.ArgumentParser(
    prog="resmet.py", description="Restricted Electronic Structure Methods Educational Toolkit",
    formatter_class=lambda prog: ap.HelpFormatter(prog, max_help_position=128),
    add_help=False, allow_abbrev=False
)

# add the arguments
parser.add_argument("-m", "--molecule", help="Molecule file in the .xyz format. (default: %(default)s)", default="molecule.xyz")
parser.add_argument("-t", "--threshold", help="Convergence threshold. (default: %(default)s)", type=float, default=1e-12)
parser.add_argument("-h", "--help", help="This help message.", action=ap.BooleanOptionalAction)

# add integral options
parser.add_argument("--int", help="Integral files. (default: %(default)s)", default=["T_AO.mat", "V_AO.mat", "S_AO.mat", "J_AO.mat"])

# optional flags
parser.add_argument("--diis", help="Flag ofor the DIIS convergence accelerator.", action=ap.BooleanOptionalAction)

# method switches
parser.add_argument("--fci", help="Perform the full configuration interaction calculation.", action=ap.BooleanOptionalAction)
parser.add_argument("--ccd", help="Perform the doubles coupled clusters calculation.", action=ap.BooleanOptionalAction)
parser.add_argument("--ccsd", help="Perform the singles/doubles coupled clusters calculation.", action=ap.BooleanOptionalAction)
parser.add_argument("--mp2", help="Perform the second order Moller-Plesset calculation.", action=ap.BooleanOptionalAction)
parser.add_argument("--mp3", help="Perform the third order Moller-Plesset calculation.", action=ap.BooleanOptionalAction)

# parse the arguments
args = parser.parse_args()

# print the help message if the flag is set
if args.help: parser.print_help(); exit()

# forward declaration of integrals and energies in MS basis (just to avoid NameError in linting)
Hms, Fms, Jms, Jmsa, Emss, Emsd = np.zeros([0]), np.zeros([0]), np.zeros([0]), np.zeros([0]), np.zeros([0]), np.zeros([0])

# OBTAIN THE MOLECULE AND ATOMIC INTEGRALS =======================================================================================

# get the atomic numbers and coordinates of all atoms
atoms  = np.array([ATOM[line.split()[0]] for line in open(args.molecule).readlines()[2:]], dtype=int  )
coords = np.array([line.split()[1:]      for line in open(args.molecule).readlines()[2:]], dtype=float)

# convert coordinates to bohrs and forward declare orbital slices and atom count
coords *= 1.8897261254578281; o, v = slice(0, 0), slice(0, 0); natoms = len(atoms)

# load the one-electron integrals from the files
H, S = np.loadtxt(args.int[0], skiprows=1) + np.loadtxt(args.int[1], skiprows=1), np.loadtxt(args.int[2], skiprows=1);

# load the two-electron integrals from files
J = np.loadtxt(args.int[3], skiprows=1).reshape(4 * [S.shape[1]])

# HARTREE-FOCK METHOD ============================================================================================================

# energies, iteration counter, number of basis functions and number of occupied/virtual orbitals
E_HF, E_HF_P, VNN, iter, nbf, nocc = 0, 1, 0, 0, S.shape[0], sum(atoms) // 2; nvirt = nbf - nocc

# exchange integrals and the guess density matrix
K, D = J.transpose(0, 3, 2, 1), np.zeros((nbf, nbf))

# Fock matrix, coefficient matrix and orbital energies initialized to zero
F, C, eps = np.zeros((nbf, nbf)), np.zeros((nbf, nbf)), np.zeros((nbf))

# DIIS containers
DIIS_F, DIIS_E = [], []

# the X matrix which is the inverse of the square root of the overlap matrix
SEP = np.linalg.eigh(S); X = SEP[1] @ np.diag(1 / np.sqrt(SEP[0])) @ SEP[1].T

# the scf loop
while abs(E_HF - E_HF_P) > args.threshold:

    # build the Fock matrix and increment the iteration counter
    F = H + np.einsum("ijkl,ij->kl", J - 0.5 * K, D, optimize=True); iter += 1

    # DIIS extrapolation
    if args.diis and iter > 1:

        # append the DIIS matrices
        DIIS_F.append(F); DIIS_E.append(S @ D @ F - F @ D @ S);

        # truncate the DIIS subspace
        if len(DIIS_F) > 5: DIIS_F.pop(0), DIIS_E.pop(0)

        # build the DIIS system
        A = np.ones ((len(DIIS_F) + 1, len(DIIS_F) + 1)); A[-1, -1] = 0
        b = np.zeros((len(DIIS_F) + 1                 )); b[-1]     = 1

        # fill the DIIS matrix
        for i, j in it.product(range(len(DIIS_F)), range(len(DIIS_F))):
            A[i, j] = A[j, i] = np.einsum("ij,ij", DIIS_E[i], DIIS_E[j])

        # solve the DIIS equations and extrapolate the Fock matrix
        c = np.linalg.solve(A, b); F = np.einsum("i,ijk->jk", c[:-1], DIIS_F)

    # solve the Fock equations
    eps, C = np.linalg.eigh(X @ F @ X); C = X @ C

    # build the density from coefficients
    D = 2 * np.einsum("ij,kj->ik", C[:, :nocc], C[:, :nocc])

    # save the previous energy and calculate the current electron energy
    E_HF_P, E_HF = E_HF, 0.5 * np.einsum("ij,ij", D, H + F, optimize=True)

# calculate nuclear-nuclear repulsion
for i, j in ((i, j) for i, j in it.product(range(natoms), range(natoms)) if i != j):
    VNN += 0.5 * atoms[i] * atoms[j] / np.linalg.norm(coords[i, :] - coords[j, :])

# print the results
print("    RHF ENERGY: {:.8f} ({} ITERATIONS)".format(E_HF + VNN, iter))

# INTEGRAL TRANSFORMS FOR POST-HARTREE-FOCK METHODS ==============================================================================
if args.mp2 or args.mp3 or args.ccd or args.ccsd or args.fci:

    # define the occ and virt spinorbital slices shorthand
    o, v = slice(0, 2 * nocc), slice(2 * nocc, 2 * nbf)

    # define the tiling matrix for the Jmsa coefficients and energy placeholders
    P = np.array([np.eye(nbf)[:, i // 2] for i in range(2 * nbf)]).T

    # define the spin masks
    M = np.repeat([1 - np.arange(2 * nbf, dtype=int) % 2], nbf, axis=0)
    N = np.repeat([    np.arange(2 * nbf, dtype=int) % 2], nbf, axis=0)

    # tile the coefficient matrix, apply the spin mask and tile the orbital energies
    Cms, epsms = np.block([[C @ P], [C @ P]]) * np.block([[M], [N]]), np.repeat(eps, 2)

    # transform the core Hamiltonian and Fock matrix to the molecular spinorbital basis
    Hms = np.einsum("ip,ij,jq->pq", Cms, np.kron(np.eye(2), H), Cms, optimize=True)
    Fms = np.einsum("ip,ij,jq->pq", Cms, np.kron(np.eye(2), F), Cms, optimize=True)

    # transform the coulomb integrals to the MS basis in chemists' notation
    Jms = np.einsum("ip,jq,ijkl,kr,ls->pqrs",
        Cms, Cms, np.kron(np.eye(2), np.kron(np.eye(2), J).T), Cms, Cms, optimize=True
    );

    # antisymmetrized two-electron integrals in physicists' notation
    Jmsa = (Jms - Jms.swapaxes(1, 3)).transpose(0, 2, 1, 3)

    # tensor epsilon_i^a
    Emss = epsms[o] - epsms[v, None]

    # tensor epsilon_ij^ab
    Emsd = epsms[o] + epsms[o, None] - epsms[v, None, None] - epsms[v, None, None, None]

# MOLLER-PLESSET PERTURBATION THEORY =============================================================================================
if args.mp2 or args.mp3:

    # energy containers
    E_MP2, E_MP3 = 0, 0

    # calculate the MP2 correlation energy
    if args.mp2 or args.mp3:
        E_MP2 += 0.25 * np.einsum("abij,ijab,abij",
            Jmsa[v, v, o, o], Jmsa[o, o, v, v], Emsd**-1, optimize=True
        )
        print("    MP2 ENERGY: {:.8f}".format(E_HF + E_MP2 + VNN))

    # calculate the MP3 correlation energy
    if args.mp3:
        E_MP3 += 0.125 * np.einsum("abij,cdab,ijcd,abij,cdij",
            Jmsa[v, v, o, o], Jmsa[v, v, v, v], Jmsa[o, o, v, v], Emsd**-1, Emsd**-1, optimize=True
        )
        E_MP3 += 0.125 * np.einsum("abij,ijkl,klab,abij,abkl",
            Jmsa[v, v, o, o], Jmsa[o, o, o, o], Jmsa[o, o, v, v], Emsd**-1, Emsd**-1, optimize=True
        )
        E_MP3 += 1.000 * np.einsum("abij,cjkb,ikac,abij,acik",
            Jmsa[v, v, o, o], Jmsa[v, o, o, v], Jmsa[o, o, v, v], Emsd**-1, Emsd**-1, optimize=True
        )
        print("    MP3 ENERGY: {:.8f}".format(E_HF + E_MP2 + E_MP3 + VNN))

# COUPLED CLUSTER METHOD =========================================================================================================
if args.ccd or args.ccsd:

    # energy containers for all the CC methods
    E_CCD, E_CCD_P, E_CCSD, E_CCSD_P = 0, 1, 0, 1

    # initialize the first guess for the t-amplitudes as zeros
    t1, t2 = np.zeros((2 * nvirt, 2 * nocc)), np.zeros(2 * [2 * nvirt] + 2 * [2 * nocc])

    # CCD loop
    if args.ccd:
        while abs(E_CCD - E_CCD_P) > args.threshold:

            # collect all the distinct LCCD terms
            lccd1 = 0.5 * np.einsum("abcd,cdij->abij", Jmsa[v, v, v, v], t2, optimize=True)
            lccd2 = 0.5 * np.einsum("klij,abkl->abij", Jmsa[o, o, o, o], t2, optimize=True)
            lccd3 = 1.0 * np.einsum("akic,bcjk->abij", Jmsa[v, o, o, v], t2, optimize=True)

            # apply the permuation operator and add it to the corresponding LCCD terms
            lccd3 += lccd3.transpose(1, 0, 3, 2) - lccd3.swapaxes(0, 1) - lccd3.swapaxes(2, 3)

            # collect all the remaining CCD terms
            ccd1 = -0.50 * np.einsum("klcd,acij,bdkl->abij", Jmsa[o, o, v, v], t2, t2, optimize=True)
            ccd2 = -0.50 * np.einsum("klcd,abik,cdjl->abij", Jmsa[o, o, v, v], t2, t2, optimize=True)
            ccd3 = +0.25 * np.einsum("klcd,cdij,abkl->abij", Jmsa[o, o, v, v], t2, t2, optimize=True)
            ccd4 = +1.00 * np.einsum("klcd,acik,bdjl->abij", Jmsa[o, o, v, v], t2, t2, optimize=True)

            # permutation operators
            ccd1 -= ccd1.swapaxes(0, 1)
            ccd2 -= ccd2.swapaxes(2, 3)
            ccd4 -= ccd4.swapaxes(2, 3)

            # update the t-amplitudes
            t2 = (Jmsa[v, v, o, o] + lccd1 + lccd2 + lccd3 + ccd1 + ccd2 + ccd3 + ccd4) / Emsd

            # evaluate the energy
            E_CCD_P, E_CCD = E_CCD, 0.25 * np.einsum("ijab,abij", Jmsa[o, o, v, v], t2)

        # print the CCD energy
        print("    CCD ENERGY: {:.8f}".format(E_HF + E_CCD + VNN))

    # CCSD loop
    if args.ccsd:
        while abs(E_CCSD - E_CCSD_P) > args.threshold:

            # define taus
            tau, ttau = t2.copy(), t2.copy()

            # add contributions to the tilde tau
            ttau += 0.5 * np.einsum("ai,bj->abij", t1, t1, optimize=True).swapaxes(0, 0)
            ttau -= 0.5 * np.einsum("ai,bj->abij", t1, t1, optimize=True).swapaxes(2, 3)

            # add the contributions to tau
            tau += np.einsum("ai,bj->abij", t1, t1, optimize=True).swapaxes(0, 0)
            tau -= np.einsum("ai,bj->abij", t1, t1, optimize=True).swapaxes(2, 3)

            # define the deltas for Fae and Fmi
            dae, dmi = np.eye(2 * nvirt), np.eye(2 * nocc)

            # define Fae, Fmi and Fme
            Fae, Fmi, Fme = (1 - dae) * Fms[v, v], (1 - dmi) * Fms[o, o], Fms[o, v].copy()

            # add the contributions to Fae
            Fae -= 0.5 * np.einsum("me,am->ae",     Fms[o, v],        t1,   optimize=True)
            Fae += 1.0 * np.einsum("mafe,fm->ae",   Jmsa[o, v, v, v], t1,   optimize=True)
            Fae -= 0.5 * np.einsum("mnef,afmn->ae", Jmsa[o, o, v, v], ttau, optimize=True)

            # add the contributions to Fmi
            Fmi += 0.5 * np.einsum("me,ei->mi",     Fms[o, v],        t1,   optimize=True)
            Fmi += 1.0 * np.einsum("mnie,en->mi",   Jmsa[o, o, o, v], t1,   optimize=True)
            Fmi += 0.5 * np.einsum("mnef,efin->mi", Jmsa[o, o, v, v], ttau, optimize=True)

            # add the contributions to Fme
            Fme += np.einsum("mnef,fn->me", Jmsa[o, o, v, v], t1, optimize=True)

            # define Wmnij, Wabef and Wmbej
            Wmnij = Jmsa[o, o, o, o].copy()
            Wabef = Jmsa[v, v, v, v].copy()
            Wmbej = Jmsa[o, v, v, o].copy()

            # define some complementary variables used in the Wmbej intermediate
            t12  = 0.5 * t2 + np.einsum("fj,bn->fbjn", t1, t1,  optimize=True)

            # add contributions to Wmnij
            Wmnij += 0.25 * np.einsum("efij,mnef->mnij", tau, Jmsa[o, o, v, v], optimize=True)
            Wabef += 0.25 * np.einsum("abmn,mnef->abef", tau, Jmsa[o, o, v, v], optimize=True)
            Wmbej += 1.00 * np.einsum("fj,mbef->mbej",   t1,  Jmsa[o, v, v, v], optimize=True) 
            Wmbej -= 1.00 * np.einsum("bn,mnej->mbej",   t1,  Jmsa[o, o, v, o], optimize=True) 
            Wmbej -= 1.00 * np.einsum("fbjn,mnef->mbej", t12, Jmsa[o, o, v, v], optimize=True) 

            # define the permutation arguments for Wmnij and Wabef and add them
            PWmnij = np.einsum("ej,mnie->mnij", t1, Jmsa[o, o, o, v], optimize=True)
            PWabef = np.einsum("bm,amef->abef", t1, Jmsa[v, o, v, v], optimize=True)

            # add the permutations to Wmnij and Wabef
            Wmnij += PWmnij - PWmnij.swapaxes(2, 3)
            Wabef += PWabef.swapaxes(0, 1) - PWabef

            # define the right hand side of the T1 and T2 amplitude equations
            rhs_T1, rhs_T2 = Fms[v, o].copy(), Jmsa[v, v, o, o].copy()

            # calculate the right hand side of the CCSD equation for T1
            rhs_T1 += 1.0 * np.einsum("ei,ae->ai",     t1, Fae,              optimize=True)
            rhs_T1 -= 1.0 * np.einsum("am,mi->ai",     t1, Fmi,              optimize=True)
            rhs_T1 += 1.0 * np.einsum("aeim,me->ai",   t2, Fme,              optimize=True)
            rhs_T1 -= 1.0 * np.einsum("fn,naif->ai",   t1, Jmsa[o, v, o, v], optimize=True)
            rhs_T1 -= 0.5 * np.einsum("efim,maef->ai", t2, Jmsa[o, v, v, v], optimize=True)
            rhs_T1 -= 0.5 * np.einsum("aemn,nmei->ai", t2, Jmsa[o, o, v, o], optimize=True)

            # contracted F matrices that used in the T2 equations
            Faet = np.einsum("bm,me->be", t1, Fme, optimize=True)
            Fmet = np.einsum("ej,me->mj", t1, Fme, optimize=True)

            # define the permutation arguments for all terms in the equation for T2
            P1  = np.einsum("aeij,be->abij",    t2,     Fae - 0.5 * Faet, optimize=True)
            P2  = np.einsum("abim,mj->abij",    t2,     Fmi + 0.5 * Fmet, optimize=True)
            P3  = np.einsum("aeim,mbej->abij",  t2,     Wmbej,            optimize=True)
            P3 -= np.einsum("ei,am,mbej->abij", t1, t1, Jmsa[o, v, v, o], optimize=True)
            P4  = np.einsum("ei,abej->abij",    t1,     Jmsa[v, v, v, o], optimize=True)
            P5  = np.einsum("am,mbij->abij",    t1,     Jmsa[o, v, o, o], optimize=True)

            # calculate the right hand side of the CCSD equation for T2
            rhs_T2 += 0.5 * np.einsum("abmn,mnij->abij", tau, Wmnij, optimize=True)
            rhs_T2 += 0.5 * np.einsum("efij,abef->abij", tau, Wabef, optimize=True)
            rhs_T2 += P1.transpose(0, 1, 2, 3) - P1.transpose(1, 0, 2, 3)
            rhs_T2 -= P2.transpose(0, 1, 2, 3) - P2.transpose(0, 1, 3, 2)
            rhs_T2 += P3.transpose(0, 1, 2, 3) - P3.transpose(0, 1, 3, 2)
            rhs_T2 -= P3.transpose(1, 0, 2, 3) - P3.transpose(1, 0, 3, 2)
            rhs_T2 += P4.transpose(0, 1, 2, 3) - P4.transpose(0, 1, 3, 2)
            rhs_T2 -= P5.transpose(0, 1, 2, 3) - P5.transpose(1, 0, 2, 3)

            # Update T1 and T2 amplitudes and save the previous iteration
            t1, t2 = rhs_T1 / Emss, rhs_T2 / Emsd; E_CCSD_P = E_CCSD

            # evaluate the energy
            E_CCSD  = 1.00 * np.einsum("ia,ai",      Fms[o, v],        t1    )
            E_CCSD += 0.25 * np.einsum("ijab,abij",  Jmsa[o, o, v, v], t2    )
            E_CCSD += 0.50 * np.einsum("ijab,ai,bj", Jmsa[o, o, v, v], t1, t1)

        # print the CCSD energy
        print("   CCSD ENERGY: {:.8f}".format(E_HF + E_CCSD + VNN))

# CONFIGURATION INTERACTION ======================================================================================================
if args.fci:

    # generate the determiants
    dets = [np.array(det) for det in it.combinations(range(2 * nbf), 2 * nocc)]

    # define the CI Hamiltonian
    Hci = np.zeros([len(dets), len(dets)])

    # define the Slater-Condon rules, "so" is an array of unique and common spinorbitals
    slater0 = lambda so: (
        sum(np.diag(Hms)[so]) + sum([0.5 * Jmsa[m, n, m, n] for m, n in it.product(so, so)])
    )
    slater1 = lambda so: (
        Hms[so[0], so[1]] + sum([Jmsa[so[0], m, so[1], m] for m in so[2:]])
    )
    slater2 = lambda so: (
        Jmsa[so[0], so[1], so[2], so[3]]
    )

    # filling of the CI Hamiltonian
    for i in range(0, Hci.shape[0]):
        for j in range(i, Hci.shape[1]):

            # aligned determinant and the sign
            aligned, sign = dets[j].copy(), 1

            # align the determinant "j" to "i" and calculate the sign
            for k in (k for k in range(len(aligned)) if aligned[k] != dets[i][k]):
                while len(l := np.where(dets[i] == aligned[k])[0]) and l[0] != k:
                    aligned[[k, l[0]]] = aligned[[l[0], k]]; sign *= -1

            # find the unique and common spinorbitals
            so = np.block(list(map(lambda l: np.array(l), [
                [aligned[k] for k in range(len(aligned)) if aligned[k] not in dets[i]],
                [dets[i][k] for k in range(len(dets[j])) if dets[i][k] not in aligned],
                [aligned[k] for k in range(len(aligned)) if aligned[k] in dets[i]]
            ]))).astype(int)

            # apply the Slater-Condon rules and multiply by the sign
            if ((aligned - dets[i]) != 0).sum() == 0: Hci[i, j] = Hci[j, i] = slater0(so) * sign
            if ((aligned - dets[i]) != 0).sum() == 1: Hci[i, j] = Hci[j, i] = slater1(so) * sign
            if ((aligned - dets[i]) != 0).sum() == 2: Hci[i, j] = Hci[j, i] = slater2(so) * sign

    # solve the eigensystem and assign energy
    eci, Cci = np.linalg.eigh(Hci); E_FCI = eci[0] - E_HF

    # print the results
    print("    FCI ENERGY: {:.8f}".format(E_HF + E_FCI + VNN))

Nonadiabatic Exact Quantum Dynamics

#!/usr/bin/env python

import argparse as ap, itertools as it, matplotlib.animation as anm, matplotlib.pyplot as plt, numpy as np, scipy as sp, scipy.linalg

np.set_printoptions(edgeitems=30, linewidth=100000, formatter=dict(float=lambda x: "%20.14f" % x)); np.random.seed(0)

# SECTION FOR PARSING COMMAND LINE ARGUMENTS =====================================================================================

# create the parser
parser = ap.ArgumentParser(
    prog="resmet.py", description="Numerically Exact Quantum Dynamics Educational Toolkit",
    formatter_class=lambda prog: ap.HelpFormatter(prog, max_help_position=128),
    add_help=False, allow_abbrev=False
)

# add the arguments
parser.add_argument("-a", "--align", help="Align the wavefunction plot to the potential.", action=ap.BooleanOptionalAction)
parser.add_argument("-c", "--imaginary", help="Perform imaginary-time propagation for n states.", type=int, default=0)
parser.add_argument("-d", "--damp", help="Gaussian damping parameter. (default: %(default)s)", type=float, default=0.003)
parser.add_argument("-f", "--factor", help="Factor to scale the wavefunction. (default: %(default)s)", type=float, default=10)
parser.add_argument("-g", "--guess", help="Initial guess. (default: %(default)s)", type=str, default="[np.exp(-(r1-1)**2)]")
parser.add_argument("-h", "--help", help="Print this help message.", action=ap.BooleanOptionalAction)
parser.add_argument("-i", "--iterations", help="Number of iterations. (default: %(default)s)", type=int, default=500)
parser.add_argument("-l", "--limit", help="Grid limits. (default: %(default)s)", type=float, default=8)
parser.add_argument("-m", "--mass", help="Mass of the particle. (default: %(default)s)", type=float, default=1)
parser.add_argument("-n", "--ntraj", help="Number of Bohmian trajectories. (default: %(default)s)", type=int, default=100)
parser.add_argument("-p", "--points", help="Number of grid points. (default: %(default)s)", type=int, default=128)
parser.add_argument("-t", "--timestep", help="Time step of the simulation. (default: %(default)s)", type=float, default=0.1)
parser.add_argument("-u", "--adiabatic", help="Adiabatic transform. (default: %(default)s)", action=ap.BooleanOptionalAction)
parser.add_argument("-v", "--potential", help="Potential matrix. (default: %(default)s)", type=str, default="[[0.5*r1**2]]")

# parse the arguments
args = parser.parse_args()

# replace the variables in the string expressions
for i in range(1, 10): args.guess     =     args.guess.replace(f"r{i}", f"r[:, {i - 1}]")
for i in range(1, 10): args.potential = args.potential.replace(f"r{i}", f"r[:, {i - 1}]")

# print the help message if the flag is set
if args.help: parser.print_help(); exit()

# PREPARE VARIABLES FOR THE DYNAMICS =============================================================================================

# extract the number of dimensions without using regex
ndim = max([int(e[0]) for e in args.potential.split("r[:, ")[1:]]) + 1

# define the function to evaluate potential
potf = lambda: np.array(eval(args.potential)).transpose(2, 0, 1);

# define the function to evaluate the guess wavefunction on a specified grid
psif = lambda: np.array(list(map(lambda x: x * np.ones(args.points**ndim), eval(args.guess))), dtype=complex).T

# REAL AND IMAGINARY QUANTUM DYNAMICS ============================================================================================

# calculate the space step and the grid limits in each dimension
dr, grid = 2 * args.limit / (args.points - 1), [np.linspace(-args.limit, args.limit, args.points)] * ndim

# create the grid in real and fourier space
r = np.stack(np.meshgrid(*[np.linspace(-args.limit, args.limit, args.points)] * ndim, indexing="ij"), axis=-1).reshape(-1, ndim)
k = np.stack(np.meshgrid(*[2 * np.pi * np.fft.fftfreq(args.points, dr)      ] * ndim, indexing="ij"), axis=-1).reshape(-1, ndim)

# create the potential, wavefunction and extract wavefunction dimensions
V, psi = potf(), psif(); shape = ndim * [args.points] + [psi.shape[1]]

# normalize the guess wavefunction
psi /= np.sqrt(dr * np.einsum("ij,ij->", psi.conj(), psi))

# create the containers for the observables and wavefunctions
position, momentum, ekin, epot = [], [], [], []; wfnopt, wfn = [], [psi]

# create the function to apply an operator in the momentum space to the n dimensional wavefunction
fapply = lambda op, psik: np.fft.ifftn((op * psik).reshape(shape), axes=range(ndim)).reshape(psi.shape)

# iterate over the propagations
for i in range(args.imaginary if args.imaginary else 1):

    # print the propagation header
    print() if i else None; print("PROPAGATION OF STATE %d " % (i))

    # get the random coordinate indices
    rind = np.random.choice(psi.shape[0], size=args.ntraj, p=(np.abs(psi)**2 * dr).sum(axis=1))

    # create the initial points for Bohmian trajectories
    trajs = np.concatenate((r[rind ][:, None, :], np.zeros((args.ntraj, args.iterations, ndim))), axis=1)

    # initialize the initial wavefunction from the wfn container and clear all containers
    psi = wfn[0]; wfn.clear(), position.clear(), momentum.clear(), ekin.clear(), epot.clear()

    # get the propagator exponent unit
    unit = -0.5 * (1 if args.imaginary else 1j) * args.timestep

    # calculate the propagators for each point in the grid
    K = np.array([sp.linalg.expm(unit * np.sum(k[i, :]**2) / args.mass * np.eye(psi.shape[1])) for i in range(r.shape[0])])
    R = np.array([sp.linalg.expm(unit *                                  V[i]                ) for i in range(r.shape[0])])

    # print the propagation header
    print("%6s %12s %12s %12s" % ("ITER", "EKIN", "EPOT", "ETOT", ))

    # propagate the wavefunction
    for j in range(args.iterations + 1):

        # propagate in real space 
        if (j): psi = np.einsum("ijk,ik->ij", R, psi)

        # fourier transform the wavefunction
        if (j): psi = np.fft.fftn(psi.reshape(shape), axes=range(ndim)).reshape(psi.shape)

        # propagate in momentum space
        if (j): psi = np.einsum("ijk,ik->ij", K, psi)

        # inverse fourier transform the wavefunction
        if (j): psi = np.fft.ifftn(psi.reshape(shape), axes=range(ndim)).reshape(psi.shape)

        # propagate in real space
        if (j): psi = np.einsum("ijk,ik->ij", R, psi)

        # orthogonalize the wavefunction
        for k in range(len(wfnopt)): psi -= np.sum(wfnopt[k].conj() * psi) * wfnopt[k] * dr

        # normalize the wavefunction
        if args.imaginary: psi /= np.sqrt(dr * np.einsum("ij,ij->", psi.conj(), psi))

        # append the potential energy and the wavefunction
        epot.append(np.einsum("ij,ijk,ik->", psi.conj(), V, psi).real * dr); wfn.append(psi.copy())

        # create a n dimensional copy of the wavefunction and its fourier transform
        psid, psik = psi.reshape(shape), np.fft.fftn(psi.reshape(shape), axes=range(ndim)).reshape(psi.shape)

        # append the kinetic energy
        ekin.append((psi.conj() * fapply((0.5 * np.sum(k**2, axis=1) / args.mass)[:, None], psik)).real.sum() * dr)

        # append the position
        position.append(np.sum(r * np.sum(np.abs(psi)**2, axis=1, keepdims=True), axis=0) * dr)

        # append the momentum
        momentum.append([(psi.conj() * fapply(1j * k[:, l:l + 1], psik)).imag.sum() * dr for l in range(ndim)])

        # Bohmian velocity container
        v = np.zeros(shape[:-1] + [ndim])

        # calculate probability current in each dimension
        if (j): currents = [(np.conjugate(psid) * np.gradient(psid, dr, axis=l)).sum(axis=-1).imag for l in range(ndim)]

        # calculate the velocity of the Bohmian trajectories
        if (j): v[..., :] = np.array([currents[l] / ((np.abs(psid)**2).sum(axis=-1) + 1e-14) / args.mass for l in range(ndim)]).T

        # propagate the Bohmian trajectories
        if (j): trajs[:, j] = (lambda r: r + sp.interpolate.interpn(points=grid, values=v, xi=r) * args.timestep)(trajs[:, j - 1])

        # print the iteration info
        if j % 100 == 0: print("%6d %12.6f %12.6f %12.6f" % (j, ekin[-1], epot[-1], ekin[-1] + epot[-1]))

    # append the optimized wavefunction to the container
    if args.imaginary: wfnopt.append(psi.copy())

# ADIABATIC TRANSFORM AND SPECTRUM ===============================================================================================

# calculate the adiabatic eigenstates
A = [np.linalg.eigh(V[i])[0] for i in range(V.shape[0])]
U = [np.linalg.eigh(V[i])[1] for i in range(V.shape[0])]

# adiabatize the potential and wavefunctions
V   = np.array ([np.diag(a) for a in A]) if args.adiabatic else np.array(V  )
wfn = np.einsum("ikl,jik->jil", U, wfn ) if args.adiabatic else np.array(wfn)

# calculate the density matrices and acf
density = np.einsum("jia,jib->jab", wfn,           wfn.conj()).real * dr
acf     = np.einsum("ij,tij->t",    wfn[0].conj(), wfn       )      * dr

# symmetrize the acf
acf = np.concatenate((np.flip(acf)[:-1], np.array(acf).conj()))

# apply the damping to the acf
acf *= np.exp(-args.damp * (np.arange(-args.iterations, args.iterations + 1) * args.timestep)**2)

# create the padded acf
acfpad = np.pad(acf, 2 * [10 * len(acf)], mode="constant")

# calculate the spectrum of the zero-padded acf and the corresponding energies
spectrum = np.abs(np.fft.fft(acfpad))**2; omega = 2 * np.pi * np.fft.fftfreq(len(spectrum), args.timestep)

# PRINT AND PLOT THE RESULTS =====================================================================================================

# print the final population
print(); print("FINAL POPULATION: %s" % np.diag(density[-1]))

# scale the wavefunction and add the potential to the wavefunction
wfn = args.factor * np.array(wfn); wfn += (1 + 1j) * np.einsum("ijj,k->kij", V, np.ones(args.iterations + 1)) if args.align else 0

# extract the momenta from the Bohmian trajectories
ptrajs = np.gradient(trajs, args.timestep, axis=1) * args.mass

# create the stationary subplots
fig, axs = plt.subplots(2, 3, figsize=(12, 6)); time = np.arange(args.iterations + 1) * args.timestep

# plot the energies
axs[0, 0].plot(time, ekin, label="Kinetic Energy"  )
axs[0, 0].plot(time, epot, label="Potential Energy")

# plot the population
axs[0, 1].plot(time, [np.diag(rho) for rho in density], label=[f"S$_{i}$" for i in range(density.shape[1])])

# print the acf
axs[1, 0].plot(np.arange(-args.iterations, args.iterations + 1) * args.timestep, np.array(acf).real, label="Re(ACF)")
axs[1, 0].plot(np.arange(-args.iterations, args.iterations + 1) * args.timestep, np.array(acf).imag, label="Im(ACF)")

# plot the spectrum
axs[1, 1].plot(omega[np.argsort(omega)], spectrum[np.argsort(omega)] / np.max(spectrum))

# plot the position and momentum of the Bohmian trajectories
[axs[0, 2].plot(time,  trajs[i, :, 0], alpha=0.05, color="tab:blue") for i in range(args.ntraj)]
[axs[1, 2].plot(time, ptrajs[i, :, 0], alpha=0.05, color="tab:blue") for i in range(args.ntraj)]

# plot the numerically exact expectation values of position and momentum
axs[0, 2].plot(time, np.array(position)[:, 0], color="tab:orange", label="$<\Psi|\hat{r_x}|\Psi>$")
axs[1, 2].plot(time, np.array(momentum)[:, 0], color="tab:orange", label="$<\Psi|\hat{p_x}|\Psi>$")

# plot the mean of the Bohmian trajectories
axs[0, 2].plot(time, np.mean( trajs[:, :, 0], axis=0), "--", color="black", label="$<r_x>$")
axs[1, 2].plot(time, np.mean(ptrajs[:, :, 0], axis=0), "--", color="black", label="$<p_x>$")

# set the labels for the stationary plot
axs[0, 0].set_xlabel("Time (a.u.)"  ); axs[0, 0].set_ylabel("Energy (a.u.)"           )
axs[0, 1].set_xlabel("Time (a.u.)"  ); axs[0, 1].set_ylabel("Population"              )
axs[0, 2].set_xlabel("Time (a.u.)"  ); axs[0, 2].set_ylabel("Position (a.u.)"         )
axs[1, 0].set_xlabel("Time (a.u.)"  ); axs[1, 0].set_ylabel("Autocorrelation Function")
axs[1, 1].set_xlabel("Energy (a.u.)"); axs[1, 1].set_ylabel("Normalized Intensity"    )
axs[1, 2].set_xlabel("Time (a.u.)"  ); axs[1, 2].set_ylabel("Momentum (a.u.)"         )

# set the domain for the spectrum plot, the end will be as last element from the end less than some value
axs[1, 1].set_xlim(0, omega[np.argsort(omega)][np.where(spectrum[np.argsort(omega)] / np.max(spectrum) > 1e-6)][-1])

# enable legends
axs[0, 0].legend(); axs[0, 1].legend(); axs[1, 0].legend(); axs[0, 2].legend(); axs[1, 2].legend()

# only for 1D
if ndim == 1:
    
    # creace the wavefunction plot
    wfig, wax = plt.subplots(1, 1)

    # plot the wavefunction
    wfnplot = np.array([
        [wax.plot(r, wfn[0][:, i].real, label="Re($\Psi$)")[0], wax.plot(r, wfn[0][:, i].imag, label="Im($\Psi$)")[0]]
    for i in range(psi.shape[1])]).flatten()

    # set the labels for the wavefunction plot and enable legend
    wax.set_xlabel("Position (a.u.)"); wax.set_ylabel("Wavefunction"); wax.legend()

    # extract the wfn min and max
    minwfn, maxwfn = min(np.array(wfn).real.min(), np.array(wfn).imag.min()), max(np.array(wfn).real.max(), np.array(wfn).imag.max())

    # set the limits for the wavefunction animation
    wax.set_ylim(minwfn - 0.1 * (maxwfn - minwfn), maxwfn + 0.1 * (maxwfn - minwfn))

    # define the update function for the wavefunction animation
    update = lambda i: [
        wfnplot[j].set_ydata(wfn[i][:, j // 2].real if j % 2 == 0 else wfn[i][:, j // 2].imag) for j in range(2 * psi.shape[1])
    ]

    # make the wavefunction plot animation and set the layout
    ani = anm.FuncAnimation(wfig, update, frames=range(len(wfn)), repeat=True, interval=30); wfig.tight_layout()

# show the plot
fig.tight_layout(); plt.show()

Surface Hopping Classical Dynamics

#!/usr/bin/env python

import argparse as ap, itertools as it, matplotlib.animation as anm, matplotlib.pyplot as plt, numpy as np, scipy as sp, scipy.linalg

np.set_printoptions(edgeitems=30, linewidth=100000, formatter=dict(float=lambda x: "%20.14f" % x)); np.random.seed(0)

# SECTION FOR PARSING COMMAND LINE ARGUMENTS ===========================================================================

# create the parser
parser = ap.ArgumentParser(
    prog="resmet.py", description="Surface Hopping Classical Dynamics Educational Toolkit",
    formatter_class=lambda prog: ap.HelpFormatter(prog, max_help_position=128),
    add_help=False, allow_abbrev=False
)

# add the arguments
parser.add_argument("-h", "--help", help="Print this help message.", action=ap.BooleanOptionalAction)
parser.add_argument("-i", "--iterations", help="Number of iterations. (default: %(default)s)", type=int, default=5000)
parser.add_argument("-m", "--mass", help="Mass of the particle. (default: %(default)s)", type=float, default=1)
parser.add_argument("-n", "--trajectories", help="Number of classical trajectories. (default: %(default)s)", type=int, default=1000)
parser.add_argument("-s", "--state", help="Initial state of the trajectories. (default: %(default)s)", type=int, default=0)
parser.add_argument("-t", "--timestep", help="Time step of the simulation. (default: %(default)s)", type=float, default=0.1)
parser.add_argument("-p", "--momentum", help="Momentum distribution. (default: %(default)s)", type=float, nargs= "+", default=[0, 1])
parser.add_argument("-r", "--position", help="Coords distribution. (default: %(default)s)", type=float, nargs= "+", default=[1, 0.5])
parser.add_argument("-u", "--adiabatic", help="Adiabatic transform. (default: %(default)s)", action=ap.BooleanOptionalAction)
parser.add_argument("-v", "--potential", help="Potential matrix. (default: %(default)s)", type=str, default="[[0.5*r1**2]]")

# surface hopping arguments
parser.add_argument("--lzsh", help="Enable LZSH algorithm. (default: %(default)s)", action=ap.BooleanOptionalAction)
parser.add_argument("--fssh", help="Enable FSSH algorithm. (default: %(default)s)", action=ap.BooleanOptionalAction)
parser.add_argument("--mash", help="Enable MASH algorithm. (default: %(default)s)", action=ap.BooleanOptionalAction)

# parse the arguments
args = parser.parse_args()

# replace the variables in the string expressions
for i in range(1, 10): args.potential = args.potential.replace(f"r{i}", f"r[:, {i - 1}]")

# print the help message if the flag is set
if args.help: parser.print_help(); exit()

# SURFACE HOPPING ALGORITHMS =====================================================================================================

# define the state vector and containers for the potential and transformation matrices
s = np.zeros((args.trajectories, args.iterations + 1), dtype=int) + args.state; Vs, Us = [], []

# define the Fewest Switches Surface Hopping algorithm
def fssh(i, substeps=10):

    # fill the coefficients on the first iteration
    if i == 1: 
        for j in range(args.trajectories): C[j, s[j, 0]] = 1

    # compute the eigenvector overlap and the trajectory indices
    O = Us[-1].swapaxes(1, 2) @ Us[-2]; traji = np.arange(args.trajectories)

    # calculate the time derivative coupling
    TDC = (np.transpose(O, (0, 2, 1)) - O) / (2 * args.timestep)

    # vectorized derivative function
    dC = lambda C: -1j * np.einsum("ijj->ij", Vs[-1]) * C - np.einsum("ijk,ik->ij", TDC, C)

    # loop over the substeps
    for _ in range(substeps):

        # calculate the Runge-Kutta coefficients
        k1 = dC(C                                      )
        k2 = dC(C + 0.5 * args.timestep * k1 / substeps)
        k3 = dC(C + 0.5 * args.timestep * k2 / substeps)
        k4 = dC(C + 1.0 * args.timestep * k3 / substeps)

        # update the electronic coefficients and get trajectory indices
        C[:] = C + args.timestep * (k1 + 2 * k2 + 2 * k3 + k4) / substeps / 6.0;

        # calculate the denominator for the hopping probability
        denominator = 0.5 * (np.abs(C[traji, s[:, i]])**2 + 1e-14) * substeps / args.timestep

        # calculate the hopping probability
        p = TDC[traji, s[:, i], :] * (C * np.conjugate(C[traji, s[:, i]][:, None])).real / denominator[:, None]

        # calculate the hopping mask
        hopmask = (np.random.rand(args.trajectories)[:, None] < p)

        # perform the hop using the mask to the state that has maximum hopping probability
        if hopmask.any(): s[hopmask.any(axis=1), i:] = np.argmax(p, axis=1)[hopmask.any(axis=1), None]

# define the Landau-Zener Surface Hopping algorithm
def lzsh(i):

    # loop over the trajectories
    for j in range(args.trajectories):

        # generate random number
        rn = np.random.rand()

        # loop over the states
        for k in (l for l in range(V.shape[1]) if l != s[j, i]):

            # skip current state
            if k == s[j, i]: continue

            # calculate the energy differences
            Z0 = abs(Vs[-1][j, k, k] - Vs[-1][j, s[j, i], s[j, i]])
            Z1 = abs(Vs[-2][j, k, k] - Vs[-2][j, s[j, i], s[j, i]])
            Z2 = abs(Vs[-3][j, k, k] - Vs[-3][j, s[j, i], s[j, i]])

            # calculate first derivatives of the energy differences
            dZ0, dZ1 = (Z0 - Z1) / args.timestep, (Z1 - Z2) / args.timestep

            # calculate the second derivative
            ddZ0 = (Z0 - 2 * Z1 + Z2) / args.timestep**2

            # check if the trajectory is in the place for a hop
            if (dZ0 * dZ1 > 0 or (dZ0 * dZ1 < 0 and ddZ0 < 0)): continue

            # calculate the hopping probability
            p = np.exp(-0.5 * np.pi * np.sqrt(Z0**3 / ddZ0)) if (Z0**3 * ddZ0 > 0) else 0

            # hop to another state
            if rn < p:
                s[j, i:] = k; break

# define the Mapping Approach to Surface Hopping algorithm
def mash(i):

    # sample the bloch vectors if i == 1
    for j in (k for k in range(args.trajectories) if i == 1):

        # define the angles
        p, ct = 2 * np.pi * np.random.rand(), np.sqrt(np.random.rand()); st = np.sqrt(1 - ct**2)

        # fill the row
        for l in range(len(SPHR)): SPHR[l, j] = np.array([st * np.cos(p), st * np.sin(p), ct])

    # compute the eigenvector overlap and store spheres
    O = Us[-1].swapaxes(1, 2) @ Us[-2]; SPHRP = SPHR.copy()

    # calculate the time derivative coupling
    TDC = (np.transpose(O, (0, 2, 1)) - O) / (2 * args.timestep)

    # loop over the trajectories
    for j in range(args.trajectories):

        # loop over all spheres
        for k in range(len(SPHR)):

            # get upper and lower index
            su, sd = max(SIND[j, k]), min(SIND[j, k])

            # calculate the propagator
            omega = sp.linalg.expm(np.array([
                [0,                                     Vs[-1][j, sd, sd] - Vs[-1][j, su, su], 2 * TDC[j, sd, su]],
                [Vs[-1][j, su, su] - Vs[-1][j, sd, sd], 0,                                     0                 ],
                [-2 * TDC[j, sd, su],                   0,                                     0                 ]
            ]) * args.timestep)

            # propagate the Bloch vector
            SPHR[k, j] = omega @ SPHR[k, j]

        # loop over spheres
        for k in range(len(SPHR)):

            # perform the jump if the sphere crossed the equator
            if SPHRP[k, j, 2] * SPHR[k, j, 2] < 0: s[j, i:] = SIND[j, k][0] if SIND[j, k][1] == s[j, i] else SIND[j, k][1]

        # loop over sphere indices if the jump occured
        for k in (l for l in range(len(SIND[j])) if s[j, i] != s[j, i - 1]):

            # update the indices of the spheres
            if SIND[j, k][0] == s[j, i - 1] and SIND[j, k][1] != s[j, i]: SIND[j, k][0] = s[j, i]
            if SIND[j, k][1] == s[j, i - 1] and SIND[j, k][0] != s[j, i]: SIND[j, k][1] = s[j, i]

# PERFORM THE CLASSICAL DYNAMICS =================================================================================================

# create the initial conditions for the trajectories
r = np.column_stack([np.random.normal(mu, sigma, len(s)) for mu, sigma in zip(args.position[0::2], args.position[1::2])])
v = np.column_stack([np.random.normal(mu, sigma, len(s)) for mu, sigma in zip(args.momentum[0::2], args.momentum[1::2])])

# extract the number of states
nstate = np.array(eval(args.potential)).shape[0]

# create the electronic coefficients and one Bloch sphere
C = np.zeros((args.trajectories, nstate), dtype=complex)
S = np.zeros((args.trajectories, 3     ), dtype=float  )

# create the array of spheres and sphere indices for the MASH algorithm
SPHR = np.array([ S.copy()     for i in range(nstate - 1)                ]                                   )
SIND = np.array([[[s[0, 0], i] for i in range(nstate - 0) if i != s[0, 0]] for j in range(args.trajectories)])

# divide momentum by mass and define acceleration
v /= args.mass; a = np.zeros_like(r); diff = 0.0001;

# print the propagation header
print("%6s %12s %12s %12s" % ("ITER", "EKIN", "EPOT", "ETOT"))

# loop over the iterations
for i in range(args.iterations + 1):

    # save the previous values
    rp = r.copy(); vp = v.copy(); ap = a.copy()

    # loop over the dimensions and propagate
    for j in (j for j in range(r.shape[1]) if i):

        # calculate offsets
        rplus = r.copy(); rplus[:, j] += diff
        rmins = r.copy(); rmins[:, j] -= diff

        # calculate the potential energy at the offsetted positions
        Vplus = np.array(eval(args.potential.replace("r", "rplus"))).transpose(2, 0, 1)
        Vmins = np.array(eval(args.potential.replace("r", "rmins"))).transpose(2, 0, 1)

        # transform the potential energy to the adiabatic basis
        if args.adiabatic: Vplus = np.einsum("ij,jk->ijk", np.linalg.eigvalsh(Vplus), np.eye(V.shape[1]))
        if args.adiabatic: Vmins = np.einsum("ij,jk->ijk", np.linalg.eigvalsh(Vmins), np.eye(V.shape[1]))

        Vplusi = np.einsum("ijj->ij", Vplus)[np.arange(args.trajectories), s[:, i]]
        Vminsi = np.einsum("ijj->ij", Vmins)[np.arange(args.trajectories), s[:, i]]

        # calculate the acceleration
        a[:, j] = 0.5 * (Vminsi - Vplusi) / (diff * args.mass)

        # update the positions and velocities
        v[:, j] += 0.5 * (a[:, j] + ap[:, j]) * args.timestep; r[:, j] += (v[:, j] + 0.5 * a[:, j] * args.timestep) * args.timestep

    # calculate the diabatic potential
    V = np.array(eval(args.potential)).transpose(2, 0, 1)

    # adiabatize the potential
    E, U = np.linalg.eigh(V); V = np.einsum("ij,jk->ijk", E, np.eye(V.shape[1])); Vs.append(V); Us.append(U)

    # maximize overlap between the current and previous eigenvectors
    if i > 1: Us[-1] = Us[-1] * np.where(np.sum(Us[-1] * Us[-2], axis=1) < 0, -1, 1)[:, None, :]

    # surface hopping algorithm
    if (args.fssh and i > 0): fssh(i)
    if (args.lzsh and i > 1): lzsh(i)
    if (args.mash and i > 0): mash(i)

    # calculate the potential and kinetic energy for each trajectory
    Epot = V[np.arange(args.trajectories), s[:, i], s[:, i]]; Ekin = 0.5 * args.mass * np.sum(v**2, axis=1)

    # get the mask for trajectories that hopped to another state
    mask = (s[:, i] != s[:, i - bool(i)]) & (Ekin > (Epot - V[np.arange(args.trajectories), s[:, i - bool(i)], s[:, i - bool(i)]]))

    # rescale the velocities of the trajectories that hopped to another state
    if mask.any(): v[mask] *= np.sqrt((Ekin - Epot + V[np.arange(args.trajectories), s[:, i - 1], s[:, i - 1]]) / Ekin)[mask, None]

    # recalculate the kinetic energy if the velocities were rescaled
    if mask.any(): Ekin = 0.5 * args.mass * np.sum(v**2, axis=1)

    # print the iteration
    if i % 1000 == 0: print("%6d %12.6f %12.6f %12.6f" % (i, np.mean(Ekin), np.mean(Epot), np.mean(Ekin + Epot)))

# PRINT AND PLOT THE RESULTS =====================================================================================================

# print the final populations
print(); print("FINAL POPULATION: %s" % (np.array([(s[:, -1] == j).sum() / s.shape[0] for j in range(V.shape[1])])))

# create the subplots
fig, axs = plt.subplots(1, 1, figsize=(8, 6));

# plot the population
axs.plot(np.arange(args.iterations + 1) * args.timestep, [[(s[:, i] == j).sum() / s.shape[0] for j in range(V.shape[1])] for i in range(s.shape[1])])

# set the labels
axs.set_xlabel("Time (a.u.)"); axs.set_ylabel("Population")

# show the plot
plt.tight_layout(); plt.show()